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a b s t r a c t

An alternative method, called the Martin-Synge algorithm, is introduced to calculate numerical solutions
of the equilibrium-dispersive (ED) model. The developed algorithm is based on the earlier work of Friday
and Levan [1] and on the continuous plate model of Martin and Synge [2]. The column is divided evenly
into a series of virtual vessels in which a simplified mass balance equation is solved accurately by the
Runge-Kutta-Fehlberg method and the elution profile is given by the numerical solution for the last
vessel. The dispersion of the compound during the elution process is controlled by adjusting the number
of virtual vessels into which the column is divided. Solving the ED model under linear conditions with
quilibrium-dispersive model
artin-Synge plate model

nverse method

this method gives exactly the same profile as the analytical solution of the Martin-Synge plate model. The
Martin-Synge method gives better results than the Rouchon method (1) when the isotherms involved
are sigmoidal or anti-Langmuir; and, more importantly, (2) in the case of multi-component problems.
Finally, the Martin-Synge method proves to be more robust and faster than the OCFE method that, until
now, was considered to be one of the most robust and accurate algorithms. The developed algorithm was
used for the calculation of the coefficients of the isotherm of butyl benzoate by the inverse method, using

lgorit
a simplex optimization a

. Introduction

Several differential models describe the migration of sample
ones along chromatographic columns [3]. These models have dif-
erent degree of complexity. The most complex general rate model
4–7], considers all the processes taking place in the mobile phase,
n the pores, and on the surface of the stationary phase. This model
rovides the most detailed information on the chromatographic
rocesses. On the other hand, the simplest ideal model [8–10] does
ot consider any kinetic process causing band broadening. It just

nforms on the effects of the thermodynamic process on the evo-
ution of band profiles. The equilibrium-dispersive (ED) model is
good compromise for the optimization of chromatographic pro-
esses. In the ED model [3], it is assumed that: (1) the mass transfer
inetics is fast and the mobile and the stationary phases are con-
tantly in equilibrium, (2) band dispersion takes place in the column
hrough axial dispersion and nonequilibrium effects (mass trans-
er resistances and finite adsorption-desorption kinetics) and their

∗ Corresponding author. Tel.: +1 8659740733; fax: +1 8659742667.
E-mail address: guiochon@ion.chem.utk.edu (G. Guiochon).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2010.10.035
hm.
© 2010 Elsevier B.V. All rights reserved.

contributions can be lumped together in an apparent axial disper-
sion coefficient, Da. The ED model has no closed-form analytical
solution in most cases. Although it has some approximate solu-
tions, their validity is limited (see Chapter 10.2 of Ref. [3]). In most
cases of practical interest, numerical solutions are needed.

A variety of methods are available to derive numerical solutions
of Eq. (3) (see later), including finite-difference and finite-element
methods. The principle of the finite difference methods consists
of replacing the continuous plane (z, t) by the grid obtained by
dividing the space and time into a number of small, equal seg-
ments and replacing the differential terms by the corresponding
finite difference terms. Many combinations of these various finite
differences can be used for each term of the mass balance equa-
tion and a partial differential equation can be approximated by
many different finite-difference schemes. It is essential that the
numerical errors made during the calculations be controlled and
there are two different approaches for the calculation of numeri-
cal solutions of the mass balance equation. First, it can be directly
solved by setting the integration increments to minimize the error

made [11,12]. Second, the space and time increments can be set
on such a way that the numerical error simulates the band dis-
persion in the column, as is done in Rouchon [13,14] and Craig
[15,16] algorithms. The finite difference methods give fast solu-
tions that are easy to use for the solution of the mass balance

dx.doi.org/10.1016/j.chroma.2010.10.035
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:guiochon@ion.chem.utk.edu
dx.doi.org/10.1016/j.chroma.2010.10.035
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quation of single compounds. However, the accuracy of the band
rofiles calculated by finite difference methods is poor in the case
f multi component mixtures. In these cases, the apparent disper-
ion coefficient can be estimated precisely only for one compound.
hen, the time and space increments of the numerical solution
annot simulate the dispersion of the other components. The dis-
repancy increases with increasing number of components and
ith increasing difference between the retention factors of these

ompounds. The over- or underestimation of the apparent dis-
ersion may have serious impact on the estimates of isotherm
arameters with the inverse method and on the optimization of
eparations.

In contrast with finite difference schemes, the time and space
omains in the finite element methods are divided into subdo-
ains, commonly referred to as finite elements. The unknown

unction is represented within each element by an interpolating
olynomial which is continuous and has continuous derivatives to a
pecified order, within the element [17]. There are several finite ele-
ent methods. The one most frequently used in chromatography is

rthogonal collocation on finite elements (OCFE). The calculation of
umerical solutions of partial differential equations with an OCFE
ethod was widely discussed in the fundamental book of Villad-

en and Michelsen [18]. This method was successfully applied to
he modeling of many different separation and reaction processes
n chemical engineering. The method of orthogonal collocation
n finite element was initially applied to the solution of the ED
odel by Ma and Guiochon [19]. The numerical solutions of the

ystems of partial differential equations of chromatography calcu-
ated by OCFE are more accurate than those obtained with finite
ifference methods, but these calculations take much more time
3].

Friday and Levan [1] investigated theoretically the condensa-
ion of benzene and water in adsorption beds during their thermal
egeneration. As Martin and Synge [2] did earlier for the mod-
ling of liquid chromatography, the authors modeled the packed
ed as a number of well-mixed tanks in series. A numerical solu-
ion of the model was obtained by using backward differences
or the discretization of the partial differential equations in the
xial direction, in order to conserve mass and energy, provid-
ng ordinary differential equations (ODEs) for each stage. These
DEs were solved by the fourth-order Runge-Kutta method [20].
ater, different authors used the same procedure for modeling
rocesses in adsorption bed [21,22]. Although this procedure

s capable for the simulation of convection-diffusion problems,
either of these groups investigated the number of stages nec-
ssary to correctly estimate the effects of diffusion and mass
ransfer. Recently, Katsuo et al. [23] and Cornel et al. [24] used
he same approach for the simulation of simulated moving bed
hromatography [23] and of high-performance liquid chromatog-
aphy [24]. Although these authors analyzed the numerical error
f the calculation, they did not determine the exact number of
tages required for an accurate simulation of dispersion in the col-
mn.

The aim of this work is to investigate the applicability of the
ethod introduced by Friday and Levan [1] to calculate solu-

ions of the mass balance equation of liquid chromatography.
ince this approach is analogous to the Martin and Synge plate
odel, the method is named the Martin-Synge algorithm. In

his work, this method will be compared with the most fre-
uently used finite difference (Rouchon) and finite element (OFCE)
ethods. Our goal was also to show that the Martin-Synge algo-
ithm can perform satisfactorily under conditions when other
ethods are either unstable or require special attention to imple-
ent. The developed algorithm is applied to the determination

f the isotherm parameters of butyl benzoate by the inverse
ethod.
A 1217 (2010) 8127–8135

2. Theory

2.1. Martin-Synge plate model

The Martin and Synge plate model [2] is a continuous plate
model. It assumes that the column is equivalent to a series of contin-
uous flow mixers. Mobile phase is transferred from one vessel to the
next as new mobile phase is added into the first vessel. Hence, the
mobile phase flows continuously and the volume of mobile and sta-
tionary phases in each mixer remain constant. The model assumes
also that, at the beginning of the experiment, the first plate only is
loaded with the sample and that there are no sample components
in the other plates. The elution profile given by this model is

c[t] = 1
�

e
t
�

(
t

�

)(N−1) 1
(N − 1)!

(1)

where c is the concentration of the eluted compound, N is the num-
ber of vessels, later called theoretical plates, and � is the residence
time of the compound in a vessel.

� = L (1 + k)
u0 N

(2)

In this equation, L is the column length, k is the retention factor,
and u0 is the linear velocity of the mobile phase.

2.2. Equilibrium-dispersive model

It was shown that, when the mass transfer kinetics is fast or
when the dispersion coefficient of the solute can be calculated accu-
rately, the differential mass balance of the solute [25–27] can be
written as:

∂ c(z, t)
∂ t

+ F
∂ q(z, t)

∂ t
+ u

∂ c(z, t)
∂ z

= Da
∂2 c(z, t)

∂ z2
(3)

where q and c are the stationary and the mobile phase concentra-
tions of the compound, respectively, t is the time, z the distance
along the column, u the linear velocity, and F = (1 − ε)/ε is the phase
ratio, with ε the total column porosity of the column. q is related to
c through the isotherm equation, q = f(c). Eq. (3) is a local equation,
and valid everywhere in the column.

The apparent dispersion coefficient, Da, is given by:

Da = u
H

2
(4)

where H is the apparent height equivalent to a theoretical plate
(HETP), obtained experimentally. This approximation allows the
equilibrium-dispersive model to correctly take into account the
influence of the column efficiency on the profile of elution bands.

2.3. Martin-Synge algorithm for the solution of mass balance
equation

Just as in the original Martin and Synge plate model [2] and in
the work of Friday and Levan [1], the column is divided evenly into
a series of continuous flow mixers. In each vessel, the following
non-linear differential equation is solved accurately:

d cm[t]
d t

+ F
d qm[t]

d t
+ u

cm[t] − cm−1[t]
�z

= 0 (5)

The initial condition is cm[t = 0] = c0m. In this equation, m is the
rank of the vessel. Assuming that the column is divided into M ves-

sels, we have 1 ≤ m ≤ M. �z is the length of the vessel in which the
equation is solved (�z = L/M). cm and cm−1 are the concentration
profiles of the solute in the mth and (m − 1)th vessels. Accordingly,
c0 is the injection concentration and cM is the elution profile of the
solute.
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At a given time, the Taylor series expansion of the solute con-
entration in the (m − 1)th vessel

m−1 = cm − �z
∂c

∂z

∣∣∣∣
z

+ �z2

2
∂2c

∂z2

∣∣∣∣
z

− �z3

6
∂3c

∂z3

∣∣∣∣
z

+ · · · (6)

here z = m �z. We can truncate this series after the second order
erm in �z and use this approximation during the solution of the
ifferential equation:

m−1 ≈ cm − �z
∂c

∂z

∣∣∣∣
z

+ �z2

2
∂2c

∂z2

∣∣∣∣
z

(7)

This equation is approximate, hence erroneous, due to the trun-
ation. Because the order of this truncation error is �z3, O(�z3), it
an be neglected in most cases, since the values of the �z-s, which
re equal to the HETP (see later), are small, even in the case of
reparative columns.

Eq. (7) can be rearranged to calculate the backward difference
uotient of the concentration in space.

cm − cm−1

�z
≈ ∂c

∂z

∣∣∣∣
z

− �z

2
∂2c

∂z2

∣∣∣∣
z

(8)

Then, this backward different quotient can be substituted into
q. (5) which can be rearranged as follows

∂ c

∂ t

∣∣∣∣
z

+ F
∂ q

∂ t

∣∣∣∣
z

+ u
∂c

∂z

∣∣∣∣
z

≈ u
�z

2
∂2c

∂z2

∣∣∣∣
z

(9)

By comparing Eqs. (3) and (9), we conclude that the previous
quation can be approximated by the latter one if Da = u(�z/2). In
q. (4) it was shown that, according to the ED model, the apparent
ispersion coefficient, Da, is equal to u(H/2). Thus, Eqs. (3) is equiv-
lent to the equation of the ED model if �z = H, or in other words,
f the number of slices into which the column is divided is equal to
he number of its theoretical plates. Accordingly

z = L

N
(10)

here L is the length of the column, and N the number of theoretical
lates.

. Experimental

.1. Instrumentation and materials

The experiments were carried out using a HP 1090 Series II liq-
id chromatograph (Hewlett Packard, now Agilent Technologies,
alo Alto, CA), equipped with a multisolvent delivery system, an
utomatic injector, a column thermostat, a DAD detector, and a HP
hemstation data aquisition system. Band profiles of butyl ben-
oate were recorded at 290 nm. The volume of the system from
he gradient pump to the detector is 0.63 mL while that from the
njector to the detector is 0.033 mL.

The column used during the experiments was a
50 mm × 4.6 mm Luna C18 (Phenomenex, Torrance, CA, USA)
olumn packed with 5 �m particles. The total porosity of this
olumn was 0.620. A 65:35 methanol–water mixture was used
s the eluent, at a flow rate of 1 mL/min. The components of the
obile phase were purchased from Fisher Scientific (Fair Lawn,
J, USA), the butyl benzoate solution was from Sigma-Aldrich (St.
ouis, MO, USA).
.2. Computation

.2.1. Solution of the mass balance equation
The solution of the mass balance equation using the newly

eveloped method was performed using a software written in
Fig. 1. Simplified algorithm of the solution of equilibrium-dispersive model by
Martin-Synge method.

house in the C++ language, using the GNU Scientific Library (GSL)
[28]. The simplified algorithm is illustrated in Figure 1. The column
was evenly divided into N virtual parts, representing the cascade
of vessels of the Martin-Synge plate model. In each virtual vessel,
Eq. (5) was solved by the embedded Runge-Kutta-Fehlberg (RKF45)
ODE solver routine provided by the GSL (see Chap. 25 of Ref. [28]).
The embedded RKF45 method is one of the adaptive Runge-Kutta
methods. It produces an estimate of the local truncation error of a
single Runge-Kutta step. This error estimate is then used to control
the stepsize and through it the numerical error of the calculation.
In the RKF method any accuracy goal can be set arbitrarily and the
calculation of the “exact” solution of Eq. (3) can be achieved by set-
ting the error to be very small. During our calculations, the error
was set at 1 × 10−8.

In order to calculate the solution, the RKF45 ODE solver needs
the derivatives of the concentrations (dc/dt) for each compound. In
the case of a single component problem, Eq. (5) was simply rear-
ranged for (dc/dt), which could be introduced in the source code
easily. In the case of a competitive multi-component problem, a
mass balance equation like Eq. (5) was written for each component
and the equation system obtained was solved for dcA/dt, dcB/dt,
dcC/dt, and so on. The results were then introduced in the RKF45
ODE solver algorithm. The solution for a given plate was the “inlet
profile” for the next plate. A spline was fitted for each inlet profile
by a cubic spline interpolation with natural boundary conditions
(see Chap. 26 of Ref. [28]), thus the ODE solver was able to handle
them as continuous functions. The solution of the last plate was
the elution profile. It was saved for data processing. The source
code of the program was compiled by g++ shipped by GNU Com-
piler Collection ver. 4.4.2. The O1 optimization level used during
the compilation turns on the most common forms of optimiza-
tion that do not require any speed-space tradeoffs. The calculations
were performed on a Pentium IV computer (2.80 GHz) running GNU
Linux operating system (blackPanther OS).

The injection profile has a most significant effect on the shape
and position of the profile of the elution band calculated and also on
the accuracy of the inverse method. During the model calculations
(see Figs. 1–6), a rectangular injection profile was used. However
the inverse method requires that the injection profiles be as accu-
rate as possible, in order to minimize the calculation error. In this
study, injection profiles were recorded by injecting the compound
again after replacing the column with a zero-volume connector.
For the calculation of the band profiles of butyl benzoate, a cubic
spline was fitted on the recorded injection profile, providing the
real injection profile to the Martin-Synge algorithm (see Appendix
A).

To solve the mass balance equation by the Rouchon and the OCFE
methods, we used the Chromatographic Column ver. 2.03 soft-

ware [29]. This software was written especially for the calculation
of preparative separations. With this program, the equilibrium-
dispersive and the transport-dispersive models can be solved
using the Rouchon and the OCFE methods, as well. This pro-
gram permits also the derivation of estimates of the parameters
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f single-component and multicomponent isotherm models. In the
hromatographic Column software, the VODE solver [30] is imple-
ented for the solution of differential equations with the OCFE

lgorithm. The VODE solver automatically controls the integration
ime interval to fulfill the requirement of accuracy of the calcula-
ion. However, the number of the subdomains, NS, and the number
f internal collocation points, N(k) have to be chosen individually
or any specific problem. In the Chromatographic Column software,
(k) was set to be three. The Chromatographic Column program is
free software that can be used for any purpose. This free software
as several restriction: it solves chromatographic models assum-

ng the same efficiency (the same number of theoretical plates) for
ach component, it has a restricted possibility for the estimation
f the model parameters and for the optimization of chromato-
raphic separations. However, for the purpose of this work, these
estrictions are not important.

.2.2. Simplex method for isotherm determination
The inverse method for the determination of isotherm param-

ters from an overloaded band profile was carried out using the
implex algorithm of Nelder and Mead [31] implemented in GSL
see Chap. 35 of Ref. [28]). With the simplex algorithm, the sum of
he squares of the relative differences (SSRD) between the recorded
nd the calculated data was minimized. A spline was fitted to the
hromatogram calculated from the actual isotherm parameters,
hen the concentration values of this data set was calculated at the
ime points of the measured band profile. The SSRD was calculated
n the basis of these points. The minimization was stopped when
he overall size of the simplex decreased below 10−6.

. Results and discussion

.1. Analytical solution of the model for linear case

Under linear conditions, Eq. (5) simplifies to the following form:

1 + k)
d cm[t]

d t
+ u

cm[t] − cm−1[t]
H

= 0 (11)

here k is the retention factor of the solute. An analytical solution
f this equation is easily derived in the Laplace domain, in which
ase, the Laplace transform of the concentration profile in the mth
essel, Cm[s], is given by

m[s] = Cm−1[s]
1

1 + (H/u)(1 + k)s
(12)

The Laplace-transform of the injection profile, L{c0[t]}, is C0 =
inj or cinj(1 − e−stinj )/s in the case of a Dirac-pulse injection and also
n the case of a tinj long rectangular injection, if cinj is the injected
oncentration of the solute. The concentration profiles at the last
essel, i.e., the elution profiles in the Laplace and the time domains
n the case of the injection of Dirac impulses are

N[s] = cinj[
1 + H

u (1 + k)s
]N

(13)

nd

[t] = cinj

t (N − 1)!
exp
(

− u t

H(1 + k)

)(
u t

H(1 + k)

)N

(14)

Note that Eq. (14) is equivalent to the peak profile provided
y the Martin and Synge plate model. In the case of a rectangular
njection, the elution profile in the Laplace and the time domains
re

N[s] = 1 − e−s tinj

s

cinj[
1 + (H/u)(1 + k)s

]N
(15)
A 1217 (2010) 8127–8135

and

c[t]=cinj

[
1−e−p1

N−1∑
r=0

pr
1

r!
+H[t − tinj] ·

(
e−p2

N−1∑
r=0

pr
2

r!
− 1

)]
(16)

where p1 = (t u)/(H(1 + k)), p2 = ((t − tinj) u)/(H(1 + k)), and H[x] is the
Heaviside step function [32], which is unity if x ≥ 0 and is zero oth-
erwise. The area and the first two normalized moments of Eq. (16)
are:

�0 = cinj tinj (17)

�1 = L
(1 + k)

u
+ tinj

2
(18)

�2 = L2

N

[
(1 + k)

u

]2

+
t2
inj

12
(19)

Eqs. (13)–(19) do not provide any new results and we con-
clude that the model derived in this work is equivalent to both
the equilibrium-dispersive and the Martin-Synge plate models.

4.2. Comparison of the Martin-Synge method and the Rouchon
algorithm

The Rouchon algorithm is a finite difference method in which
the spatial derivative in Eq. (5) is replaced with a forward
finite difference while the time derivative is replaced by a back-
ward finite difference. The algorithm can be used successfully to
calculate numerical solutions of the mass balance equation of sin-
gle compounds having isotherms for which the slope decreases
monotonically (typically, Langmuir-type isotherms). However, the
program crashes easily during the calculation of solutions of the
mass balance equation of compounds having a BET or an anti-
Langmuir isotherm when the solute concentration is high. The
slope of anti-Langmuir isotherms increases monotonically until
it reaches infinity for a particular concentration. BET isotherms
may have one or more inflection points, so their slopes do not
vary monotonically but increase in some concentration regions and
decrease in others. The BET isotherm may be represented by the
following equation:

q = qs bs c

(1 − bl c)(1 − bl c + bs c)
(20)

where qs is the saturation capacity of the stationary phase, q and
c are the concentrations of the solute on the stationary and in the
mobile phases, bs and bl are equilibrium constants of adsorption
on the surface of the stationary phase and on the adsorbed layer
of solutes. If bl is equal to bs, the BET isotherm reduces to an anti-
Langmuir isotherm. Both the BET and the anti-Langmuir isotherms
have a point of discontinuity at c = 1/bl.

Profiles calculated with the Rouchon method are shown in Fig. 2,
for a BET isotherm (qs = 100 mg/l, bs = 0.3 l/mg, bl = 0.08 l/mg). This
profile cannot be interpreted above a critical concentration. At the
same time, the Martin-Synge algorithm calculates correct peak pro-
files even when the injected concentrations exceeds 1/bl, the point
of discontinuity of the isotherm, as seen in Fig. 2. However, it is
important to note that the Rouchon method is much faster than the
continuous plate method. While it took only ∼40 s to calculate the
peaks of Fig. 2 (N = 10, 000), it took slightly more than five minutes
with the Martin-Synge method. The relative difference between the
calculation times decreases with decreasing number of theoretical

plates (e.g., the run times are 2 s vs. 5 s at N = 1000).

The Rouchon algorithm crashes when the Courant-Friedrich-
Lewy stability condition (see Chap. 10.3 of Ref. [3]) fails, which it
does with anti-Langmuir, BET, or other sigmoidal isotherms, when
if the injected concentration is too high. For the Rouchon algorithm,



K. Horváth et al. / J. Chromatogr. A 1217 (2010) 8127–8135 8131

Fig. 2. Comparison of band profiles of a compound having BET isotherm [see Eq.
(20)] calculated by Rouchon method (top), and Martin-Synge method (bottom).
Injected concentrations: (a) 1 g/l, (b) 2 g/l, (c) 4 g/l, (d) 6 g/l, (e) 8 g/l, (f) 10 g/l,
(
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Fig. 3. Chromatogram of a quarternary mixture calculated with the Martin-Synge
(solid line) and the Rouchon (dotted line) algorithms under linear conditions. Col-
umn: 100 × 2.1 mm, eluent flow rate: 1 ml/min, injection time: 0.005 min, total
porosity: 0.7, number of theoretical plates: 3000, retention factors: (a) 0.3, (b) 5.1,
(c) 11.6, and (d) 19.3. The numbers of theoretical plates derived from the first and
second moments of the elution peaks calculated with the Martin-Synge algorithm
are: (a) 3000, (b) 2999, (c) 3000, and (d) 3000. These numbers derived similarly from
g) 15 g/l, and (h) 25 g/l. Column: 100 mm × 2.1 mm, eluent flow rate: 1 ml/min,
njection time: 2 min, total porosity: 0.769, number of theoretical plates: 10,000,
sotherm parameters: qs = 100 g/L, bs = 0.3 L/g, bl = 0.08 L/g.

he Courant-Friedrich-Lewy stability condition requires that the
ourant number be higher than or equal to one.

= �t u

�z (1 + k)
≥ 1 (21)

here a is the Courant number, k the retention factor of the solute,
nd �t and �z the time and space increments of the numerical
alculation, respectively. Since the retention factor of a compound
aving anti-Langmuir or a BET isotherm increases with increasing

iquid phase concentration, there will always be an injection con-
entration above which the Courant number will become smaller
han unity. Eq. (21) shows that the stability of the Rouchon method
an be improved by either decreasing �z or increasing �t. How-
ver, the Rouchon method gives an exact solution only if

z = H

a0 − 1
(22)

nd
t = a0 �z (1 + klin)
u

(23)

here H is the height equivalent to a theoretical plate, klin the
etention factor of the solute under linear conditions, and a0 the
nitial Courant number that is chosen to perform the calculation.
the peaks calculated with the Rouchon method are: (a) 165, (b) 955, (c) 2930, and
(d) 11,800.

Eqs. (22) and (23) suggest that the stability of the Rouchon method
can be increased only if an initially high Courant number is chosen.
However, if the mobile phase concentration of the solute is close
to the discontinuity of the isotherm, k increases so rapidly that an
extremely high value of a0 should be chosen in order to keep the
method stable. This can lead to an increase of the calculation time by
several orders of magnitude. In addition, high a0 values can result
in too small values of �z and �t, which can cause rounding-up
problems, hence errors, if the analyst is not careful enough.

It may seem contradictory that the Martin-Synge algorithm does
not crash for injection concentrations that exceed the point of dis-
continuity of the isotherm (1/bl). However, an isotherm shows the
relationship between the equilibrium concentrations of a com-
pound in the liquid and the solid phases. Actually, to reach the
critical equilibrium concentration of the solute in the liquid phase
(1/bl), one should inject an infinite amount of solute to reach the
infinite concentration of the compound in the adsorbed phase. The
injection of any sample having a finite concentration results in an
equilibrium concentration in the liquid phase that is smaller (or
even much smaller) than 1/bl.

As mentioned previously, the Rouchon method is poorly accu-
rate in multi-component chromatography because it must use the
same apparent dispersion coefficient for all the components, so
an accurate estimate can be obtained only for one of them. In
contrast, the Martin-Synge method does not suffer from this incon-
venient. As shown in Fig. 3, the numbers of theoretical plates of
the peaks of four different compounds having a wide range of
retention factors (k = 0.3, 5.1, 11.6, 19.3) do not change when their
profiles are calculated with the Martin-Synge method while they
vary significantly when the Rouchon method is used. Note that,
even though the importance of the calculation errors made may dif-
fer widely, all the classical finite difference methods (e.g the Craig
method) have similar limitations for the chromatograms calculated
in multi-component cases, regardless of the scheme selected for
the discretization of the derivatives (backward-forward, forward-
backward, etc.).

Fig. 4 shows the chromatogram calculated with the Martin-

Synge algorithm for a mixture of four components, two of which
have competitive Langmuir -BET isotherms, when the injected
concentrations are well in the non-linear range. The competitive



8132 K. Horváth et al. / J. Chromatogr.

Fig. 4. Chromatogram of a quaternary mixture calculated by Martin-Synge method.
Compound a and d have linear (k = 0.3, 25.7), compound b and c have competitive
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comparison, the same calculation took only five seconds with the
Martin-Synge algorithm.

Fig. 6 shows that the choice of the number of subdomains is
still more important for the calculation of the band profiles of
two compounds having one a Langmuir, the other a BET isotherm,
angmuir (b) and BET (c) isotherms [see Eqs. (24) and (25)]. Column: 100 × 2.1 mm,
luent flow rate: 1 ml/min, injection time: 0.05 min, total porosity: 0.7, num-
er of theoretical plates: 4000, isotherm parameters: qsA = 150 g/L, qsB = 100 g/L,
sA = 0.28 L/g, bsB = 0.35 L/g, blB = 0.18 L/g.

sotherms used were as follows:

A = qsA bsA cA

1 + bsA cA + bsB cB
(24)

B = qsB bsB cB

(1 − blB cB) (1 − blB cB + bsBcB + bsA cA)
(25)

As seen in Fig. 4, the computation process remains stable when
he sample contains two components with competitive isotherms,
ne of them with having a BET isotherm, under nonlinear condi-
ions. Thus, the Martin-Synge method should be favored for the
alculation of band profiles of mixtures of compounds having anti-
angmuir, S-Shaped, or otherwise complex isotherms or when
ulti-component chromatograms must calculated. In any other

ases, the Rouchon algorithm should be preferred to the Martin-
ynge method due to its greater speed of calculation. However,
hromatographers who use the former model for band profile cal-
ulations must know its serious limitations.

.3. Comparison of the OCFE and the Martin-Synge algorithms

The OCFE method is considered to be one of the most accurate
nd robust method for the solution of mass balance equations in
hromatography. The idea of the OCFE method is to divide the nor-
alized space coordinate in the interval [0,1] into NS subdomains

elements). These elements can have different length, however,
hen solving chromatography separations, all the elements are

ssumed to have equal size. In each kth element, N(k) internal col-
ocation points are defined and the solution is approximated by
agrange polynomial of degree (N(k) + 2). The overall solution is
btained by joining the solutions in each element. The details of
he discretization of the spatial derivatives following the orthogo-
al collocation method were explained among others in [33]. The
D model [Eq. (3)] was solved with an OCFE method assuming
anckwerts [3] boundary conditions:

c0 − u cz=0 = −Da
∂ c

∂ z

∣∣∣∣
z=0

(26)

∂ c
∣∣∣
∂ z ∣
z=L

= 0 (27)

The solution calculated can be regarded as the “real” solution
hen: (1) increasing the number of subdomains or of internal col-

ocation points above a certain value has practically no effect on
A 1217 (2010) 8127–8135

the solution obtained, (2) the mass balance is fulfilled. From our
experience, it is appropriate, for the solutions of chromatographic
separation processes for which the isotherm model is described by a
convex upward isotherm (e.g, a Langmuir or a Jovanovič isotherm),
to choose a number of collocation points, N(k), in each subdomain
equal to 3. In the Chromatographic Column ver. 2.03 used for our
OCFE calculations., three internal collocation points were used. In
this case the number of subdomains should typically be set close
to 10% of the number of theoretical plates of the column in order
to obtain an “accurate” solution. However, when the isotherm can
generate extremely steep shocks, a larger number of subdomains
is required while for problems generating elution band profile that
are quasi Gaussian, the number of subdomains used may be smaller.

The rules given above regarding the choice of NS and N(k) do not
apply for isotherms that are expressed by mathematical formulae
similar to that of the anti-Langmuir model, for example the BET
model, Eq. (20), or for competitive model expressed by Eqs. (24)
and (25). Then, the OCFE method converges toward a real solution
only if the solute concentration in the mobile phase entering into
the column is less than the critical concentration:

c = 1
bl

(28)

When the inlet concentration is larger than 1/bl, the OCFE
method generally fails. An example of the behavior of the OCFE
method when the condition in Eq. (25) is not fulfilled, is presented
in Figs. 5 and 6 where it is compared with the solution provided by
the Martin-Synge algorithm.

Fig. 5 shows that the OCFE band profiles of a given compound
that were shown in Fig. 2 as calculated with the Martin-Synge
algorithm is distorted at high sample size even if the number of sub-
domains applied is a tenth of the number of theoretical plates of the
column. The area of the peaks in Fig. 5 are constant and proportional
to the injected amount. Fig. 5 shows that the profile converges
toward the one calculated by the Martin-Synge method when the
number of subdomains increases above N/10 and reaches it with
a number of subdomains equal to 0.30N. Unfortunately, increasing
the number of subdomains causes a large increase of the calcula-
tion time. While it took 27 s with 100 subdomains, it takes 2.25 min
with 300 subdomains on the PC configuration used. For the sake of
Fig. 5. Band profile of a compound having BET isotherm calculated by OCFE (black
lines) and Martin-Synge (thick gray line) methods. Number of subdomains: 100
(dotted line), 150 (dot-dashed line), 200 (dashed line), and 300 (solid line). Number
of theoretical plates: 1000. For all the remaining parameters, see Fig. 2.
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Fig. 6. Chromatogram of two competing compounds with Langmuir (dashed line)
and BET (dotted line) isotherms calculated by Martin-Synge method (top), the
peak profile of the compound having Langmuir isotherm (middle), and that of
the compound with BET isotherm (bottom) calculated by OCFE (black lines, see
later) and Martin-Synge (thick gray line) methods. Injected concentration: 25, injec-
tion time: 0.05 min, isotherm parameters: qsA = 150 g/L, qsB = 150 g/L, bsA = 0.28 L/g,
bsB = 0.25 L/g, blB = 0.10 L/g, number of theoretical plates: 1000, number of subdo-
m
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m
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O

Table 1
Peak area of two competing compounds calculated by OCFE method at different
number of subdomains (N.o. SD). For details, see Fig. 6.

N.o. SD Langmuir BET

100 12.50 12.54
150 12.50 12.57
200 12.50 12.61
ains: 100 (black dotted line), 150 (black dot-dashed line), 200 (black dashed line),
00 (thin black dotted line), 500 (thin black dot-dashed line), and 1000 (black solid

ine). For all the remaining parameters see Fig. 2.

nd experiencing competitive behavior under nonlinear condi-
ions. The peaks calculated with the OFCE and the Martin-Synge
ethods differ significantly, especially for the compound with the
ET isotherm. As the number of subdomains increases from 10%
o 100% of the number of theoretical plates, the results of the
CFE calculations converge toward the results of the Martin-Synge
300 12.50 12.70
500 12.50 12.94

1000 12.50 13.97

method. Finally, the peak profiles of the compound having a Lang-
muir isotherm calculated by the two methods match each other
perfectly well. However, in the case of the other compound (BET
isotherm) a perfect match could not be reached since the area of
this compound increases significantly with increasing number of
subdomains. Table 1 reports the peak areas of the two compounds
calculated by the OCFE method with different numbers of subdo-
mains. It shows clearly how the peak area of the compound having
a Langmuir isotherm remains stable and accurate while that of the
other compound increases by 11% when the number of subdomains
is increased from 100 to 1000. In contrast, the areas of both peaks
calculated with the Martin-Synge method were constant. It must be
mentioned, that the OCFE method with three internal collocation
points could not calculate the chromatograms under the experi-
mental conditions selected for Fig. 4. This chromatogram could be
calculated only after increasing of the number of collocation points
in the subdomains or manipulating the distribution of the sub-
domain sizes. Whenever the peak area for the second component
increases with increasing number of subdomains, it means that the
OCFE method is failing.

The unexpected behavior of the OCFE method when it is used
to calculate elution band profiles for compounds having BET
isotherms is related to the problems of fulfilling the mass balance
at the column inlet for concentrations greater than the critical con-
centration. The classical OCFE cannot handle physical conditions
under which the surface concentration cannot increase to infinity
for a finite solute mass introduced into the column. It seems that
coupling the OCFE method with a procedure that would control the
mass balance at the column inlet ought to improve the efficiency of
the OCFE method. This complex mathematical problem is, however,
out of the scope of this paper.

The OCFE and the Martin-Synge algorithms were compared
in the case of low efficiency columns (N = 100). The results
were almost identical, since only a negligible difference could be
observed between the two chromatograms. The source of this slight
difference was that the boundary conditions implemented in the
two methods were slightly different. The Danckwerts condition is
used in the Chromatographic Column software while the Martin-
Synge algorithm uses open-open boundary conditions. The choice
of the different boundary conditions can cause slight differences
in the first and second moments of the peaks if N is really small
(see Chapter 6.2 of Ref. [3]). However, for practical values of N, the
differences caused by the use of different boundary conditions is
unobservable. Results comparing the Martin-Synge and the OCFE
algorithms in the case of N = 100 are not presented here.

In conclusion, even though the OCFE method is generally robust
and accurate, it can fail for isotherm models for which the surface
concentration can, at least in theory, increase to infinity. At the
same time the Martin-Synge algorithm can solve easily, quickly,
and accurately such type of problems.
4.4. The Inverse method of isotherm determination

The Martin-Synge algorithm can be used for the calculation of
the isotherm parameters of a compound by the inverse method
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Fig. 9. Measured (dotted line) and calculated (solid line) elution profile of butyl
benzoate. Triangle injection: 0 to 7 g/L from 0 to 2 min, then 7 to 0 g/L from 2 to
4 min.
ig. 7. Overloaded band profile of butyl benzoate for the determination of isotherm
arameters by inverse method (dotted line). The solid line represents the resulting
and profile of fitting by inverse method. Solute concentration: 7 g/L, 6 min wide
ectangular injection.

34], in the same way as the Rouchon, the Craig or the OFCE meth-
ds were used successfully [35–38]. The inverse method requires
1) the record of at least one overloaded band profile of the com-
ound injected, preferably one at modest, the other at the highest
ossible concentration.; (2) the transformation, by suitable calibra-
ion of the recorded signal into a total concentration profile; (3) a
rogram that determines the best values of the parameters of an

sotherm model by minimizing the difference between the calcu-
ated and the experimental profiles. Fig. 7 shows such an overloaded
and profile for butyl benzoate. The injected concentration was
g/L, equal to the solubility of butyl benzoate in the eluent used (for
ore details on the experimental conditions, see Experimental sec-

ion). The coefficients of the BET isotherm [Eq. (20)] determined by
he inverse method are the following: qs = 198.7 g/L, bs = 0.0842 L/g,
l = 0.0395 L/g. Fig. 7 compares calculated and recorded profiles and
llustrates the remarkable agreement. Note, that the values found
n this work are close to those determined by Gritti et al. [39] for the
ame compound in the same system (qs = 164.1 g/L, bs = 0.098 L/g,
l = 0.0396 L/g). Considering that the authors used a different col-
mn and recorded the chromatogram at a different temperature,
he differences between the numerical values of the coefficients are

egligible.

Using the isotherm parameters, the elution band profiles of butyl
enzoate were calculated for different injection profiles. The results
re summarized in Figs. 8–10. Even if two of the injection profiles

ig. 8. Measured (dotted line) and calculated (solid line) elution profile of butyl
enzoate. Solute concentration: 7 g/L, injection time: 1 min.
Fig. 10. Measured (dotted line) and calculated (solid line) elution profile of butyl
benzoate. Injection: 0 to 3.5 g/L from 0 to 0.25 min, 7 g/L from 0.25 to 1 min, 2.1 g/L
from 1 to 4 min.

do not have any practical importance, they can be used for a fair test
of whether isotherms determined by the inverse method properly
describe solute retention. It can be concluded that the peak pro-
files calculated with the isotherm obtained by the inverse method
provide satisfactory estimates of the shape and the position of the
band of butyl benzoate.

5. Conclusions

The results of our work confirm the usefulness of an alter-
native method for the calculation of numerical solutions of
the equilibrium-dispersive model. The Martin-Synge algorithm is
robust and fast; it permits the successful calculations of the elution
band profiles of single compounds and of mixtures of several com-
ponents having different types of isotherms, particularly complex
isotherms. Although, several different algorithms are available to
solve the ED model, such as the Rouchon and the OCFE algorithms,
the Martin-Synge method that we have developed is a favorable
alternative to these other methods, due to its robustness, its accu-
racy and its speed of calculations.
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ppendix A.

The algorithm developed for the solution of the mass balance
quation (Fig. 1) can be implemented easily in the software Mathe-
atica (Wolfram Research). For example, in the case of a binary
ixture, with both compounds having Langmuir isotherms, the

olution is written as:

A[t ] := (qsA bsA cA[t])/(1 + bsA cA[t] + bsB cB[t])
B[t ] := (qsB bsB cB[t])/(1 + bsA cA[t] + bsB cB[t])
0A[t ] := cinjA UnitStep[t] UnitStep[-t + tinj]
0B[t ] := cinjB UnitStep[t] UnitStep[-t + tinj]
o[
sol = NDSolve[{cA’[t] + f qA’[t] + u (cA[t] - c0A[t])/dz == 0,
cB’[t] + f qB’[t] + u0 (cB[t] - c0B[t])/dz == 0,
cA[0] == 0, cB[0] == 0}, {cA,cB}, {t, 0, tmax},
WorkingPrecision ->12, PrecisionGoal ->10, AccuracyGoal ->10,
MaxSteps ->Infinity];
c0A[t ] := Evaluate[cA[t]/.sol],
c0B[t ] := Evaluate[cB[t]/.sol],
{i, 1, n}]

After defining the phase ratio (f), the linear velocity (u), the
sotherm parameters (qsA, qsB, bsA, bsB), the injection dura-
ion (tinj) and its concentration (cinjA, cinjB), the height of

theoretical plate (dz), the time of calculation (tmax), and
he number of theoretical plates (n), this code can be run in

athematica (it was tested with ver. 6 and 7). The resulting
eak profiles (c0A[t] and c0B[t]) are then plotted, integrated,
nd analyzed in any way desired. The numerical error of the
alculation can be decreased or increased with the Working-
recision, PrecisionGoal, AccuracyGoal options. Due to the ODE
olver algorithms being implemented in Mathematica, it is pos-
ible that in the case when competitive isotherms are needed,

he initial concentration of the compounds (cA[0], cB[0]) must
e set at a value larger than zero (e.g. 10−30). We also need
o mention that the solution of the mass balance equation
ith Mathematica is very time consuming in multicomponent

ases.
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